Abstract
Due to their unique tubular and spiral structure, graphene and graphene oxide nanoscrolls (GONS) have shown extensive applications in various fields. However, it is still a challenge to improve the optoelectronic application of graphene and GONS because of the zero bandgap of graphene. Herein, ammonium tetrathiomolybdate ((NH4)2MoS4) was firstly wrapped into the ((NH4)2MoS4@GONS) by molecular combing the mixture of (NH4)2MoS4 and GO solution on hydrophobic substrate. After thermal annealing, the (NH4)2MoS4 and GO were converted to MoS2 nanosheets and reduced GO (RGO) simultaneously, and, thus, the MoS2@RGONS was obtained. Raman spectroscopy and high-resolution transmission electron microscopy were used to confirm the formation of MoS2 nanosheets among the RGONS. The amount of MoS2 wrapped in RGONS increased with the increasing height of GONS, which is confirmed by the atomic force microscopy and Raman spectroscopy. The as-prepared MoS2@RGONS showed much better photoresponse than the RGONS under visible light. The photocurrent-to-dark current ratios of photodetectors based on MoS2@RGONS are ~570, 360 and 140 under blue, red and green lasers, respectively, which are 81, 144 and 35 times of the photodetectors based on RGONS. Moreover, the MoS2@RGONS-based photodetector exhibited good power-dependent photoresponse. Our work indicates that the MoS2@RGONS is expected to be a promising material in the fields of optoelectronic devices and flexible electronics.
Subject
General Materials Science,General Chemical Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献