Wind Simulations over Western Patagonia Using the Weather Research and Forecasting model and Reanalysis

Author:

Vásquez Anacona Hugo1,Mattar Cristian2,G. Alonso-de-Linaje Nicolás3ORCID,Sepúlveda Héctor H.45ORCID,Crisóstomo Jessica6

Affiliation:

1. Laboratory of Analysis of the Biosphere (LAB), University of Chile, Santiago 8320000, Chile

2. Fundación Bioera, Santiago 8320000, Chile

3. DTU Wind and Energy Systems, 4000 Roskilde, Denmark

4. Department of Geophysics (DGEO), University of Concepcion, Concepción 4030000, Chile

5. Fundación CEQUA, Punta Arenas 6200000, Chile

6. Servicio Meteorológico de la Armada de Chile, Valparaíso 2340000, Chile

Abstract

The Chilean Western Patagonia has the highest wind potential resources in South America. Its complex terrain deserves a special attention for wind modeling and assessments. In this work, we have performed a comprehensive meso-scale climate simulation on Weather Research and Forecasting (WRF) in order to provide new insights into the wind climatology in Western Patagonia. Simulations were carried out from 1989 to 2020, and we considered a previous sensitivity analysis for their configuration. In situ data from a wind mast, meteorological information and data from eddy flux stations were used to evaluate the results. Reanalysis data from ERA-5, MERRA-2 and RECON80-17 were also used to perform a comparison of the obtained results with the WRF simulation. The results show that the WRF simulation using ERA-5 presented in this work is slightly different to a mathematical reconstruction using MERRA-2 (RECON80-17), which is widely accepted in Chile for wind resource assessments, presenting a statistical difference of about EMD = 0.8 [m s−1] and RMSE = 0.5. Non-significative differences were found between the WRF simulation and MERRA-2 reanalysis, while ERA-5 with MERRA-2 presented a remarkable statistical difference of about EMD = 1.64 [m s−1] and RMSE = 1.8. In relation to flux comparison, reanalysis and WRF in contrast with in situ observations presented a good performance during the summer season, although a spatial resolution bias was noticed. These results can be used as an input for further research related to WRF simulations in Western Patagonia to provide reliable information on wind energy exploration and extreme climatological phenomena such as heat waves.

Funder

Fondecyt Regular—Project Code

Comisión Nacional de Investigación Científica y Tecnológica (Conicyt) de Chile

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3