Co-Training Semi-Supervised Learning for Fine-Grained Air Quality Analysis

Author:

Zhao Yaning,Wang LiORCID,Zhang Nannan,Huang Xiangwei,Yang Lunke,Yang WenbiaoORCID

Abstract

Due to the limited number of air quality monitoring stations, the data collected are limited. Using supervised learning for air quality fine-grained analysis, that is used to predict the air quality index (AQI) of the locations without air quality monitoring stations, may lead to overfitting in that the models have superior performance on the training set but perform poorly on the validation and testing set. In order to avoid this problem in supervised learning, the most effective solution is to increase the amount of data, but in this study, this is not realistic. Fortunately, semi-supervised learning can obtain knowledge from unlabeled samples, thus solving the problem caused by insufficient training samples. Therefore, a co-training semi-supervised learning method combining the K-nearest neighbors (KNN) algorithm and deep neural network (DNN) is proposed, named KNN-DNN, which makes full use of unlabeled samples to improve the model performance for fine-grained air quality analysis. Temperature, humidity, the concentrations of pollutants and source type are used as input variables, and the KNN algorithm and DNN model are used as learners. For each learner, the labeled data are used as the initial training set to model the relationship between the input variables and the AQI. In the iterative process, by labeling the unlabeled samples, a pseudo-sample with the highest confidence is selected to expand the training set. The proposed model is evaluated on a real dataset collected by monitoring stations from 1 February to 30 April 2018 over a region between 118° E–118°53′ E and 39°45′ N–39°89′ N. Practical application shows that the proposed model has a significant effect on the fine-grained analysis of air quality. The coefficient of determination between the predicted value and the true value is 0.97, which is better than other models.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Hebei

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3