Affiliation:
1. School of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China
2. Big Data Intelligence Centre, The Hang Seng University of Hong Kong, Hong Kong, China
Abstract
Along with the rapid development of industries and the acceleration of urbanisation, the problem of air pollution is becoming more serious. Exploring the relevant factors affecting air quality and accurately predicting the air quality index are significant in improving the overall environmental quality and realising green economic development. Machine learning algorithms and statistical models have been widely used in air quality prediction and ranking assessment. In this paper, based on daily air quality data for the city of Xi’an, China, from 1 October 2022 to 30 September 2023, we construct support vector regression (SVR), gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost), random forests (RF), neural network (NN) and long short-term memory (LSTM) models to analyse the influence of the air quality index for Xi’an and to conduct comparative tests. The predicted values and 95% prediction intervals of the AQI for the next 15 days for Xi’an, China, are given based on the Bootstrap-XGBoost algorithm. Further, the ordinal logit regression and ordinal probit regression models are constructed to evaluate and accurately predict the AQI ranks of the data from 1 October 2023 to 15 October 2023 for Xi’an. Finally, this paper proposes some suggestions and policy measures based on the findings of this paper.
Funder
National Natural Science Foundation of China
National Foundation for Social Sciences of China
University Grants Committee