Fine grained analysis method for unmanned aerial vehicle measurement based on laser-based light scattering particle sensing

Author:

Jia Xutao,Song Tianhong,Liu Guang

Abstract

As an effective particle measurement method, laser-based particle sensors combined with unmanned aerial vehicles (UAVs) can be used for measuring air quality in near ground space. The Sniffer4D Mini2 features portability and real-time acquisition of accurate spatial distribution information on air pollution. Additionally, a new fine-grained analysis method called Co-KNN-DNN has been proposed to assess air quality between flight trajectories, allowing for a more detailed presentation of the continuous distribution of air quality. Therefore, this article introduces an unmanned aerial vehicle measurement fine-grained analysis method based on laser light scattering particle sensors. Firstly, the overall scheme was designed, M30T UAV was selected to carry the portable air quality monitoring equipment, with laser-based laser particulate matter sensor and Mini2, to collect AQI and related attributes of the near-ground layer in the selected research area, to do the necessary processing of the collected data, to build a data set suitable for model input, etc., to train and optimize the model, and to carry out practical application of the model. This article is based on the Co-KNN-DNN model for fine-grained analysis of air quality in spatial dimensions. Three experiments were conducted at different altitudes in the study area to investigate the practical application of fine-grained analysis of near-surface air quality. The experimental results show that the average R-squared value can reach 0.99. Choose to conduct experiments using the M30T UAV equipped with Sniffer4D Mini2 and a laser-based particulate matter sensor. The application research validates the effectiveness and practicality of the Co-KNN-DNN model.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3