Author:
Zheng Hongxing,Yuan Jinpeng
Abstract
Mission planning is the guidance for a UAV team to perform missions, which plays the most critical role in military and civil applications. For complex tasks, it requires heterogeneous cooperative multi-UAVs to satisfy several mission requirements. Meanwhile, airborne sensor allocation and path planning are the critical components of heterogeneous multi-UAVs system mission planning problems, which affect the mission profit to a large extent. This paper establishes the mathematical model for the integrated sensor allocation and path planning problem to maximize the total task profit and minimize travel costs, simultaneously. We present an integrated mission planning framework based on a two-level adaptive variable neighborhood search algorithm to address the coupled problem. The first-level is devoted to planning a reasonable airborne sensor allocation plan, and the second-level aims to optimize the path of the heterogeneous multi-UAVs system. To improve the mission planning framework’s efficiency, an adaptive mechanism is presented to guide the search direction intelligently during the iterative process. Simulation results show that the effectiveness of the proposed framework. Compared to the conventional methods, the better performance of planning results is achieved.
Funder
National Natural Science Foundation of China
Aeronautical Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献