A Machine-Learning-Based Model for Buckling Analysis of Thermally Affected Covalently Functionalized Graphene/Epoxy Nanocomposite Beams

Author:

Ebrahimi Farzad1,Ezzati Hosein1

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin 34148-96818, Iran

Abstract

In this paper, a machine-learning model is utilized to estimate the temperature-dependent moduli of neat, thermally reduced graphene and covalently functionalized graphene/epoxy nanocomposites. In addition, the governed mathematical expressions have been used to solve the buckling problem of beams fabricated from such nanocomposites in the presence of a thermal gradient. In order to do so, an energy-based method including the shear deformable beam hypothesis is used. The beam structure is rested on the Winkler–Pasternak substrate. The reported verifications demonstrate the impressive precision of the presented ML model, as well as the buckling response of the under-study structures. Finally, in the framework of some numerical case studies, the impact of several parameters on the buckling of nanocomposite beams is depicted. The results of this study delineate that temperature has a vital role in the determination of the critical buckling load that the nanocomposite structures can endure.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3