Vibrations of Nonlocal Polymer-GPL Plates at Nanoscale: Application of a Quasi-3D Plate Model

Author:

Zou Yunhe12,Kiani Yaser3ORCID

Affiliation:

1. School of Mechanical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China

2. Inner Mongolia Key Laboratory of Special Service Intelligent Robotics, Hohhot 010051, China

3. Faculty of Engineering, Shahrekord Univeristy, Shahrekord P.O. Box 115, Iran

Abstract

An analysis is performed in this research to obtain the natural frequencies of a graphene-platelet-reinforced composite plate at nanoscale. To this end, the nonlocal elasticity theory is applied. A composite laminated plate is considered where each layer is reinforced with GPLs. The amount of GPLs may be different between the layers, which results in functionally graded media. To establish the governing equations of the plate, a quasi-3D plate model is used, which takes the non-uniform shear strains as well as normal strain through the thickness into account. With the aid of the Hamilton principle, the governing equations of the plate are established. For the case of a plate that is simply supported all around, natural frequencies are obtained using the well-known Navier solution method. The results of this study are compared with the available data in the open literature, and, after that, novel numerical results are provided to explore the effects of different parameters. It is depicted that, with the introduction of GPLs in the matrix of the composite media, the natural frequencies of the plate enhance. Also, a proper graded pattern in GPL-reinforced composite plates, i.e., an FG-X pattern, results in the maximum frequencies of the plate. In addition, the introduced quasi-3D plate theory is accurate in the estimation of the natural frequencies of thick nanocomposite plates at nanoscale.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3