Changing Spring Phenology of Northeast China Forests during Rapid Warming and Short-Term Slowdown Periods

Author:

Zhang Fengyuan,Liu BinhuiORCID,Henderson MarkORCID,Shen XiangjinORCID,Su Yuanhang,Zhou Wanying

Abstract

The vast forests of Northeast China are under great pressure from climate change. Understanding the effects of changing climate conditions on spring phenology is of great significance to assessing the stability of regional terrestrial ecosystems. Using Normalized Difference Vegetation Index data from 1982 to 2013, this paper investigated the changes in the start date of the vegetation growing season (SOS) of two main forest types in Northeast China, analyzing the changes in temporal and spatial patterns of forest spring phenology before and during the recent short-term warming slowdown, and exploring the effects of day and night temperatures and precipitation on the start of the growing season. The results showed that, during the rapid warming period (1982–1998), the SOS of deciduous needleleaf forests (DNF) was significantly advanced (−0.428 days/a, p < 0.05), while the rate of advance of SOS of deciduous broadleaf forests (DBF) was nonsignificant (−0.313 days/a, p > 0.10). However, during the short-term slowdown (1998–2013), the SOS of DBF was strongly delayed (0.491 days/a, p < 0.10), while the change in SOS of DNF was not significant (0.169 days/a, p > 0.10). The SOS was sensitive to spring maximum temperature for both forest types during the analysis period. Increases in winter precipitation influenced the SOS during the rapid warming period for DNF; this combined with the increase in the spring maximum temperature contributed to the advance in SOS. The decrease in the spring maximum temperature during the short-term slowdown, combined with a decrease in the previous summer maximum temperature, contributed to the rapid delay of SOS for DBF. DBF SOS was also more influenced by lagged effects of prior conditions, such as previous autumn to spring precipitation during the rapid warming period and previous summer maximum temperature during the short-term slowdown. In general, SOS was mainly determined by changes in daytime thermal conditions; DNF is more sensitive to temperature increases and DBF is more sensitive to decreases. Different regional climate conditions lead to differences in the distribution of DNF and DBF, as well as in the response of SOS to climate change during the rapid warming and short-term slowdown periods.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association, Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3