Carbon Allocation to Leaves and Its Controlling Factors and Impacts on Gross Primary Productivity in Forest Ecosystems of Northeast China

Author:

Li Zhiru1,Lai Quan12ORCID,Bao Yuhai12,Sude Bilige34,Bao Zhengyi5ORCID,Liu Xinyi1

Affiliation:

1. College of Geographical Science, Inner Mongolia Normal University, Hohhot 010022, China

2. Inner Mongolia Key Laboratory of Remote Sensing and Geographic Information Systems, Inner Mongolia Normal University, Hohhot 010022, China

3. Information Center, Inner Mongolia Normal University, Hohhot 010022, China

4. Department of Geography, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia

5. College of Computer Science and Technology, Inner Mongolian Normal University, Hohhot 010022, China

Abstract

Carbon allocation in forest ecosystems is essential for the optimization of growth. However, remote-sensing-based research on the estimation of carbon allocation in forests is inadequate. This article considers forests in northeastern China as the research area and uses leaf area index (LAI) data combined with random forest and structural equation modelling methods to study the spatiotemporal distribution characteristics and driving factors of carbon allocation to leaves (ΔLAI) in deciduous broad-leaved forests (DBF), deciduous coniferous forests (DNF), and mixed forests (MF) during the green-up period (GUP) at a monthly scale during April, May, June, and July from 2001 to 2021, and clarifies the impact of leaf carbon allocation on gross primary productivity (GPP). The ΔLAI was the highest in DBF in April and in DNF and MF in May. The ΔLAI in April with an increasing trend year by year in DBF and MF, and the ΔLAI in May with an increasing trend in DNF. Among all the direct and indirect relationships that affect ΔLAI, temperature (TEM) has the highest path coefficient for DBF’s ΔLAI in April (−1.213) and the start of the season (SOS) has the highest path coefficient for DNF (−1.186) and MF (0.815). ΔLAI in the GUP has a significant positive impact on the GPP. In the MF, the higher ΔLAI in May was most conducive to an increase in GPP. During the critical period, that is April and May, carbon allocation to leaves effectively improves the carbon sequestration capacity of forestland. This information is of great value for the development and validation of terrestrial ecosystem models.

Funder

Inner Mongolia Autonomous Region Natural Science Foundation

Introduction of High-Level Talents Scientific Research Start-up Fund Project

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3