Both day and night warming reduce tree growth in extremely dry soils

Author:

Zhu ChenORCID,Cui ErqianORCID,Xia JianyangORCID

Abstract

Abstract Trees in global forests are exposed to warming climate, the rate of which is different between day and night, and associated with soil drought. Previous studies commonly show that forest growth responds positively to daytime warming but negatively to night warming. However, it remains unclear whether such asymmetric responses of forest growth to day and night warming still exist in extremely dry soils. Here, based on the long-term records of the normalized difference vegetation index and ring-width index at 2294 forest sites across the Northern Hemisphere, we found that the rising daytime maximum temperature (T max) reduces stem growth but the rising nighttime minimum temperature (T min) lowers canopy greenness when the soil is drier than a threshold. We further discuss three mechanisms that could drive such negative impacts. For example, data from experimental studies showed that the shifted biomass allocation from wood to leaves is one important mechanism driving the reductions of wood growth under day warming. These findings indicate that climate warming could negatively affect tree growth in extremely dry soils, regardless of whether temperature rises during the daytime or at night. Thus, understanding the interactions of water and temperature on the sub-diurnal scale is critical for improving our ability to predict the forest dynamics under future climate change.

Funder

National Natural Science Foundation of China

National Key R&D Program

National 1000 Young Talents Program of China

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3