Best of both worlds: Acclimation to fluctuating environments confers advantages and minimizes costs of constant environments

Author:

Hodgson Mitchell J.1ORCID,Schwanz Lisa E.1ORCID

Affiliation:

1. Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences University of New South Wales Sydney New South Wales Australia

Abstract

Abstract Thermal acclimation is often considered critical in organismal responses to novel thermal conditions. Our understanding of the physiological implications of acclimation is largely derived from lab studies that either manipulate daytime basking availability or use of constant thermal regimes. In contrast, the importance of the nocturnal thermal environment (e.g. the extent of thermal respite) is often overlooked yet could play a vital role in thermal acclimation in the wild. To fill this gap, we acclimated lizards (Amphibolurus muricatus) under three thermal regimes (Hot Constant, Cold Constant and Alternating) and compared their physiological responses (Metabolic Rate, Sprint Speed, Thermal Preferences and Thermal Limits). We found that animals maintained constantly at hot temperatures (preferred temperature, 35°C) gained sprint performance increases and exhibited shifts in thermal optima not seen in those maintained constantly at cold temperatures (20°C), yet suffered costs to growth (in smaller animals) and maintenance (mass loss in larger animals). Animals maintained at alternating temperatures (12 h 20°C; 12 h 35°C) had performance benefits similar to animals in the hot treatment, without experiencing reductions in juvenile growth and adult mass. Animals acclimated under hot temperatures showed a significant lower preferred and voluntary maximum temperatures compared to animals acclimated under a cold temperature regime. We found no impact of acclimation treatment on behavioural thermal limits or standard metabolic rate. Overall, we show that alternating between access to preferred temperatures and having periods of energetic rest confer the greatest benefits for our animals. These results highlight the importance of natural body temperature variation for enhancing overall ectotherm performance and physiology, and the costs of novel thermal environments that fail to provide this variation. Read the free Plain Language Summary for this article on the Journal blog.

Funder

Australian Government

University of New South Wales

Australian Research Council

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3