A Sensor Fusion Method Using Transfer Learning Models for Equipment Condition Monitoring

Author:

Cinar Eyup

Abstract

Sensor fusion is becoming increasingly popular in condition monitoring. Many studies rely on a fusion-level strategy to enable the most effective decision-making and improve classification accuracy. Most studies rely on feature-level fusion with a custom-built deep learning architecture. However, this may limit the ability to use the widely available pre-trained deep learning architectures available to users today. This study proposes a new method for sensor fusion based on concepts inspired by image fusion. The method enables the fusion of multiple and heterogeneous sensors in the time-frequency domain by fusing spectrogram images. The method’s effectiveness is tested with transfer learning (TL) techniques on four different pre-trained convolutional neural network (CNN) based model architectures using an original test environment and data acquisition system. The results show that the proposed sensor fusion technique effectively classifies device faults and the pre-trained TL models enrich the model training capabilities.

Funder

Scientific and Technological Research Council of Turkey

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3