Noise Reduction of an Extinguishing Nozzle Using the Response Surface Method

Author:

Kim Yo-Hwan,Lee Myoungwoo,Hwang In-Ju,Kim Youn-Jea

Abstract

An inert gas such as nitrogen is used as an extinguishing agent to suppress unexpected fire in places such as computer rooms and server rooms. The gas released with high pressure causes noise above 130 dB. According to recent studies, loud noise above 120 dB has a strong vibrational energy that leads to a negative influence on electronic equipment with a high degree of integration. In this study, a basic fire-extinguishing nozzle with absorbent was selected as the reference model, and numerical analysis was conducted using the commercial software, ANSYS FLUENT ver. 18.1. A total of 45 experiment points was selected using the design of experiment (DOE) method. An optimum point was derived using the response surface method (RSM). Results show that the vibrational energy of the noise was reduced by minimizing the turbulence kinetic energy. Pressure and velocity distributions were calculated and graphically depicted with various absorbent configurations.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3