Low-Frequency Noise Investigation of 1.09 μm GaAsBi Laser Diodes

Author:

Glemža Justinas,Palenskis Vilius,Geižutis Andrejus,Čechavičius Bronislovas,Butkutė RenataORCID,Pralgauskaitė Sandra,Matukas Jonas

Abstract

GaAsBi is a suitable and very attractive material system to be used as an active layer in laser diodes (LDs). To understand the performance and the reliability of such devices and also for further laser diode improvements, the origin of noise sources should be clarified. A detailed study of near-infrared 1.09 μm wavelength GaAsBi type-I laser diodes using the low-frequency noise spectroscopy in a temperature range of (180–300) K is presented. Different types of voltage fluctuation spectral density dependencies on the forward current far below the lasing threshold have been observed. According to this, investigated samples have been classified into two groups and two equivalent noise circuits with the corresponding voltage noise sources are presented. Calculations on the voltage spectral density of the electrical noise and current-voltage characteristic approximations have been performed and the results are consistent with the experimental data. The analysis showed that one group of LDs is characterized by 1/fα-type electrical fluctuations with one steep electrical bump in the electrical noise dependence on forward current, and the origin of these fluctuations is the surface leakage channel. The LDs of the other group have two bumps in the electrical noise dependence on current where the first bump is determined by overall LD defectiveness and the second bump by Bi-related defects in the active area of LD with characteristic Lorentzian-type fluctuations having the activation energy of (0.16–0.18) eV.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3