Optimization of Water Injection Strategy before Re-Stimulation Considering Fractures Propagation

Author:

Ren Guangcong,Ma Xinfang,Zhang Shicheng,Zou Yushi,Duan Guifu,Xiong Qiyong

Abstract

Water injection before re-stimulation has a positive effect to mitigate the “frac hit” and increase oil production in tight reservoirs. However, the study of water injection strategy optimization has not been thoroughly investigated. Some conclusions can be found in the existing literature, but the pressure and stress distribution, fractures morphology and oil production were not considered as a whole workflow during the study. In addition, the different reservoir deficit was not considered. Although technical experience and economic benefit have been obtained in some field tests, failed cases still exist. To fill this gap, a series of numerical models are established based on a tight reservoir located in northwest China. Under the different re-stimulation timing, the pressure distribution, stress distribution, and fractures morphology after water injection of different injection/production ratios are calculated, respectively. The oil and water production are predicted. The results show that, after a short period of production with a small deficit, the degree of “frac hit” is slight. Injecting water has an obvious effect on increasing oil production for both parent and infill well. After a long period of production with a large deficit, the problem of “frac hit” is very severe. Injecting water has an obvious effect on increasing oil production only for the parent well. The production of infill well is influenced by the fractures’ interference and pressure increasing comprehensively. For the well group, measured by the final cumulative oil production, the optimal injection/production ratio is different, but the water injection volume is similar, which is about 15,000 m3.

Funder

Key Technologies of Mahu Conglomerate Reservoir

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3