Analysis of Horizontal Well Fracture Interactions, and Completion Steps for Reducing the Resulting Production Interference

Author:

Daneshy Ali1

Affiliation:

1. Daneshy Consultants Int'l

Abstract

Abstract An oft-occurring outcome of modern fractured horizontal well production systems is considerable interactions between adjacent hydraulic fractures; in the same well (intra-well), or in offset wells (inter-well). An unwanted consequence of these interactions is production interference. Inter-well interactions can cause production re-routing from one well into the adjacent well, and occasionally even short-term loss of production from one of the wells. Effects of intra-well fracture interactions may include production re-distribution within the created fractures, and, patchy depletion of the reservoir surrounding the horizontal well. Causes of intra-well interactions include stress shadowing and Dynamic Active Fracture Interactions (DAFI). Under common fracturing practices these can cause unpredictable deviations in fracture growth path which can even lead to coalescence of some fractures and non-uniform production from individual fractures. Another important outcome of these interactions is differences in created fracture lengths, with some fractures extending a long distance into the reservoir. Recent trends towards larger size treatments and shorter spacing between individual fractures are intensifying these effects. Inter-well interactions include frac-to-frac connections that hydraulically link the two wells together; either temporary (while fracturing only), or long term with conductive links. The latter can cause immediate production interference. Another less severe type of interaction is fracture shadowing, which may cause delayed production interference. Paper discusses how these interactions are influenced by the stress environment, formation mechanical properties, type of completion (openhole liner, cemented liner, single fractures vs. multiple fractures), fracture orientation and spacing, well spacing, and perforation schemes. It presents completion steps that reduce the uncertainty in fracture growth path and location of longer fractures. It also shows how and why combining these steps with simultaneous and zipper fracturing can reduce damage to the wellbores and the extent of production interference. On the positive side, analysis of fracture interactions can also provide valuable information about fracture characteristics; including estimates of length, orientation and conductivity, etc. With proper preparation, the information can also be used for real-time evaluation of the created fractures and treatment modifications to reduce severity of production interference.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3