Frac-Hit Prevention Countermeasures in Shale Gas Reservoirs with Natural Fractures

Author:

Xu Hualei123,Jiang Houshun123,Wang Jie123,Wang Ting123,Zhao Kangjia123,Zhang Liangjun123

Affiliation:

1. Cooperative Innovation Center of Unconventional Oil and Gas, Yangtze University, Wuhan 430100, China

2. Hubei Key Laboratory of Drilling and Production Engineering for Oil and Gas, Yangtze University, Wuhan 430100, China

3. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102206, China

Abstract

The development of natural fractures (NFs) in shale gas reservoirs is conducive to improving the productivity of shale gas wells. However, NF development leads to high-frequency frac hits between the infill and parent wells, which critically restricts its efficiency. To elucidate the large contribution of hydraulic fractures (HFs) and NFs in frac hits during the production and the development of NF-developed shale gas reservoirs, such reservoirs in the WY area of western China are taken as an example. A total of 197 frac hits well events in this area are systematically classified via the frac-hit discrimination method, and the effects of different factors on HF- and NF- dominated frac hits are classified and studied. Combined with the correlation analysis method and the chart method, the main controlling factors affecting the two types of frac hits are determined, and the corresponding frac-hit prevention countermeasures are proposed. The research demonstrates that (1) the distribution and development of NFs are crucial to production after frac hits. NFs and HFs in the WY area cause 51% and 49%, respectively, of the frac hits. (2) The main controlling factors in NF-dominated frac hits are the approximation angle, fracture linear density, and horizontal stress difference, whereas they are net pressure in fractures, horizontal stress difference, and liquid strength in HF-dominated frac hits. Sensitivity analysis shows that the NF activation difficulty coefficient fluctuates between −35.1% and 47.6%, and the maximum hydraulic fracture length fluctuates between −43.5% and 25.29%. (3) The corresponding frac-hit prevention countermeasures are proposed for the two types of formation mechanisms from different approaches, including frac-hit risk assessment and path planning, production well pressurization and stress diversion, and infill-well fracturing parameter optimization. This paper not only provides a reference for exploring the formation mechanism of frac hits in fractured shale gas reservoirs but also a theoretical basis for the corresponding frac-hit prevention countermeasures.

Funder

National Natural Science Foundation of China

State Key Laboratory of Petroleum Re-sources and Prospecting, China University of Petroleum

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3