Frac Hit Induced Production Losses: Evaluating Root Causes, Damage Location, Possible Prevention Methods and Success of Remedial Treatments

Author:

King George E.1,Rainbolt Michael F.1,Swanson Cory1

Affiliation:

1. Apache Corporation

Abstract

Abstract Frac hits or "frac bashing" is a fracture-initiated well-to-well communication event that can create production losses (or gains), and on occasion, mechanical damage when frac energy from a stimulated well extends into the drainage area or directly contacts an adjacent or offset well. Pressure increases have been detected in wells at distances ranging from hundreds to thousands of feet from the stimulated well. While these in-zone frac hit events do not pose an environmental problem if there is no failure of containment, there can be some alteration of the production potential in one or both of the wells involved. Frac hits along the preferential fracture plane were an uncommon but known event when the completion method only involved vertical wells, but the rate of incidence has increased sharply as the preferred completion method has shifted to relatively closely-spaced, multiple fractured horizontal wells (MFHW) in low permeability formations such as the mudstone rocks commonly referred to as shales. Mechanical damage within the well and success of methods of prevention, damage control and remediation will be examined by case histories and published contexts of incidents in several basins, but will not be the main goal of the paper. The primary effort will focus on examining causes of production loss and duration of the loss, including looking at production declines pre-hit and post-hit. Known causes include in-situ stress alteration potential, timing of fracture closure, near-wellbore proppant loss, liquid loading, rock-fluid interactions, sludges and wetting factors. Also considered will be geological effects such as regional fractures and linked natural fracture clusters. A main objective will be to identify pressure transient, chemical analysis or other monitoring techniques to identify location and type of damage. Remedial operations are most effective when the potential cause of production losses can be ranked probabilistically and the depth of the production-reducing event can be estimated as near-field or far-field. Analyzing this data will also assist in defining whether chemical or mechanical treatments such as refracturing or a hybrid treatment system may be the best approach.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3