Author:
Yan Li,Hu Xiao,Zhao Leyang,Chen Yu,Wei Pengcheng,Xie Hong
Abstract
Visual Simultaneous Localization and Mapping (VSLAM) is a prerequisite for robots to accomplish fully autonomous movement and exploration in unknown environments. At present, many impressive VSLAM systems have emerged, but most of them rely on the static world assumption, which limits their application in real dynamic scenarios. To improve the robustness and efficiency of the system in dynamic environments, this paper proposes a dynamic RGBD SLAM based on a combination of geometric and semantic information (DGS-SLAM). First, a dynamic object detection module based on the multinomial residual model is proposed, which executes the motion segmentation of the scene by combining the motion residual information of adjacent frames and the potential motion information of the semantic segmentation module. Second, a camera pose tracking strategy using feature point classification results is designed to achieve robust system tracking. Finally, according to the results of dynamic segmentation and camera tracking, a semantic segmentation module based on a semantic frame selection strategy is designed for extracting potential moving targets in the scene. Extensive evaluation in public TUM and Bonn datasets demonstrates that DGS-SLAM has higher robustness and speed than state-of-the-art dynamic RGB-D SLAM systems in dynamic scenes.
Funder
National Key Research and Development Project of China
Subject
General Earth and Planetary Sciences
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献