Dynamic Forecast of Desert Locust Presence Using Machine Learning with a Multivariate Time Lag Sliding Window Technique

Author:

Sun RuiqiORCID,Huang WenjiangORCID,Dong Yingying,Zhao Longlong,Zhang BiyaoORCID,Ma HuiqinORCID,Geng Yun,Ruan ChaoORCID,Xing Naichen,Chen Xidong,Li Xueling

Abstract

Desert locust plagues can easily cause a regional food crisis and thus affect social stability. Preventive control of the disaster highlights the early detection of hopper gregarization before they form devastating swarms. However, the response of hopper band emergence to environmental fluctuation exhibits a time lag. To realize the dynamic forecast of band occurrence with optimal temporal predictors, we proposed an SVM-based model with a temporal sliding window technique by coupling multisource time-series imagery with historical locust ground survey observations from between 2000–2020. The sliding window method was based on a lagging variable importance ranking used to analyze the temporal organization of environmental indicators in band-forming sequences and eventually facilitate the early prediction of band emergence. Statistical results show that hopper bands are more likely to occur within 41–64 days after increased rainfall; soil moisture dynamics increasing by approximately 0.05 m³/m³ then decreasing may enhance the chance of observing bands after 73–80 days. While sparse vegetation areas with NDVI increasing from 0.18 to 0.25 tend to witness bands after 17–40 days. The forecast model combining the optimal time lags of these dynamic indicators with other static indicators allows for a 16-day extended outlook of band presence in Somalia, Ethiopia, and Kenya. Monthly predictions from February to December 2020 display an overall accuracy of 77.46%, with an average ROC-AUC of 0.767 and a mean F-score close to 0.772. The multivariate forecast framework based on the lagging effect can realize the early warning of band presence in different spatiotemporal scenarios, supporting early decisions and response strategies for desert locust preventive management.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference95 articles.

1. Review of locust remote sensing monitoring and early warning (Chinese);Huang;J. Remote Sens.,2020

2. Climate change and locust outbreak in East Africa

3. Characteristics of desert locust plague upsurges;Hemming;Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci.,1979

4. Desert locust gregarization: a conceptual kinetic model

5. Locusts and remote sensing: a review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3