TEKSTİL ENDÜSTRİSİNDE DERİN ÖĞRENME KULLANARAK AŞIRI ELEKTRİK TÜKETİMİNİN ÖNLENMESİNE YÖNELİK BİR VAKA ÇALIŞMASI

Author:

YURDOĞLU Hakan1ORCID,GÜLEÇ Ömer1ORCID

Affiliation:

1. PAMUKKALE ÜNİVERSİTESİ

Abstract

Resources are the most critical input in the manufacturing industry therefore, resource consumption is an essential issue to be minimized. On the other hand, consumption depends on several parameters thus, it is difficult to estimate. Recently, Machine Learning (ML) and Deep Learning (DL) are powerful Artificial Intelligence (AI) subdomains for future prediction in any area. In this paper, a DL-supported electricity prediction method is designed for the textile industry as a case study in order to prevent resource over-consumption while the machines are in the standby state. This method provides dynamic consumption thresholds of electricity consumption by sliding window technique based Long-Short Term Memory (LSTM) model that helps the machines to interrupt manufacturing in their decision. These calculated thresholds are also compared with the results of Recurrent Neural Networks (RNN) and Gated Recurrent Units (GRU) as the other DL methods and Automated Regressive Integrated Moving Average (ARIMA) as a traditional method and then the results have been analyzed how close they are to real-time electricity consumption data at standby. According to the results, the LSTM model successfully predicts electricity consumption levels, sends an interrupt signal to Programmable Logic Controller (PLC) unit when the consumption levels reach the threshold and therefore prevents resource over-consumption.

Funder

Menderes Tekstil A.Ş., Denizli, Türkiye

Publisher

Muhendislik Bilimleri ve Tasarim Dergisi

Subject

Colloid and Surface Chemistry,Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3