Predicting the Global Potential Suitable Distribution of Fall Armyworm and Its Host Plants Based on Machine Learning Models

Author:

Huang Yanru12,Dong Yingying12ORCID,Huang Wenjiang12ORCID,Guo Jing12,Hao Zhuoqing12,Zhao Mingxian12,Hu Bohai12,Cheng Xiangzhe12,Wang Minghao12

Affiliation:

1. State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

The fall armyworm (Spodoptera frugiperda) (J. E. Smith) is a widespread, polyphagous, and highly destructive agricultural pest. Global climate change may facilitate its spread to new suitable areas, thereby increasing threats to host plants. Consequently, predicting the potential suitable distribution for the fall armyworm and its host plants under current and future climate scenarios is crucial for assessing its outbreak risks and formulating control strategies. This study, based on remote sensing assimilation data and plant protection survey data, utilized machine learning methods (RF, CatBoost, XGBoost, LightGBM) to construct potential distribution prediction models for the fall armyworm and its 120 host plants. Hyperparameter methods and stacking ensemble method (SEL) were introduced to optimize the models. The results showed that SEL demonstrated optimal performance in predicting the suitable distribution for the fall armyworm, with an AUC of 0.971 ± 0.012 and a TSS of 0.824 ± 0.047. Additionally, LightGBM and SEL showed optimal performance in predicting the suitable distribution for 47 and 30 host plants, respectively. Overlay analysis suggests that the overlap areas and interaction links between the suitable areas for the fall armyworm and its host plants will generally increase in the future, with the most significant rise under the RCP8.5 climate scenario, indicating that the threat to host plants will further intensify due to climate change. The findings of this study provide data support for planning and implementing global and intercontinental long-term pest management measures aimed at mitigating the impact of the fall armyworm on global food production.

Funder

National Key R&D Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3