Does AutoML Outperform Naive Forecasting?

Author:

Paldino Gian MarcoORCID,De Stefani Jacopo,De Caro FabrizioORCID,Bontempi GianlucaORCID

Abstract

The availability of massive amounts of temporal data opens new perspectives of knowledge extraction and automated decision making for companies and practitioners. However, learning forecasting models from data requires a knowledgeable data science or machine learning (ML) background and expertise, which is not always available to end-users. This gap fosters a growing demand for frameworks automating the ML pipeline and ensuring broader access to the general public. Automatic machine learning (AutoML) provides solutions to build and validate machine learning pipelines minimizing the user intervention. Most of those pipelines have been validated in static supervised learning settings, while an extensive validation in time series prediction is still missing. This issue is particularly important in the forecasting community, where the relevance of machine learning approaches is still under debate. This paper assesses four existing AutoML frameworks (AutoGluon, H2O, TPOT, Auto-sklearn) on a number of forecasting challenges (univariate and multivariate, single-step and multi-step ahead) by benchmarking them against simple and conventional forecasting strategies (e.g., naive and exponential smoothing). The obtained results highlight that AutoML approaches are not yet mature enough to address generic forecasting tasks once compared with faster yet more basic statistical forecasters. In particular, the tested AutoML configurations, on average, do not significantly outperform a Naive estimator. Those results, yet preliminary, should not be interpreted as a rejection of AutoML solutions in forecasting but as an encouragement to a more rigorous validation of their limits and perspectives.

Publisher

MDPI AG

Reference26 articles.

1. AutoML: A survey of the state-of-the-art

2. A Blocking Strategy to Improve Gene Selection for Classification of Gene Expression Data

3. Benchmarking automatic machine learning frameworks;Balaji;arXiv,2018

4. An open source automl benchmark;Gijsbers;arXiv,2019

5. Can AutoML outperform humans? An evaluation on popular OpenML datasets using AutoML Benchmark;Hanussek;arXiv,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3