Auto-Machine-Learning Models for Standardized Precipitation Index Prediction in North–Central Mexico

Author:

Magallanes-Quintanar Rafael1ORCID,Galván-Tejada Carlos E.1ORCID,Galván-Tejada Jorge Isaac1,Gamboa-Rosales Hamurabi1ORCID,Méndez-Gallegos Santiago de Jesús2ORCID,García-Domínguez Antonio1ORCID

Affiliation:

1. Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juárez 147, Centro, Zacatecas 98000, CP, Mexico

2. Colegio de Postgraduados, Campus San Luis Potosí, Salinas de Hidalgo, San Luis Potosí 78622, CP, Mexico

Abstract

Certain impacts of climate change could potentially be linked to alterations in rainfall patterns, including shifts in rainfall intensity or drought occurrences. Hence, predicting droughts can provide valuable assistance in mitigating the detrimental consequences associated with water scarcity, particularly in agricultural areas or densely populated urban regions. Employing predictive models to calculate drought indices can be a useful method for the effective characterization of drought conditions. This study applied an Auto-Machine-Learning approach to deploy Artificial Neural Network models, aiming to predict the Standardized Precipitation Index in four regions of Zacatecas, Mexico. Climatological time-series data spanning from 1979 to 2020 were utilized as predictive variables. The best models were found using performance metrics that yielded a Mean Squared Error, Mean Absolute Error, and Coefficient of Determination ranging from 0.0296 to 0.0388, 0.1214 to 0.1355, and 0.9342 to 0.9584, respectively, for the regions under study. As a result, the Auto-Machine-Learning approach successfully developed and tested Artificial Neural Network models that exhibited notable predictive capabilities when estimating the monthly Standardized Precipitation Index within the study region.

Publisher

MDPI AG

Reference46 articles.

1. Changes in Temperature and Precipitation Extremes in the IPCC Ensemble of Global Coupled Model Simulations;Kharin;J. Clim.,2007

2. The Water Resources in the Context of Climate Change Produced by the Greenhouse Gases;Badea;Ann. Univ. Oradea,2015

3. Application of Several Data-Driven Techniques to Predict a Standardized Precipitation Index;Choubin;Atmosfera,2016

4. Forecasting Drought Using Multilayer Perceptron Artificial Neural Network Model;Ali;Adv. Meteorol.,2017

5. McKee, T.B., Doesken, N.J., and Kleist, J. (1993, January 17–22). The Relationship of Drought Frequency and Duration to Time Scales. Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3