An Experimental Investigation of Steel Surface Topography Transfer by Cold Rolling

Author:

Xu DongORCID,Yang Quan,Wang Xiaochen,He Hainan,Sun Youzhao,Li Wenpei

Abstract

Automobile and household appliance panels require steel strips with extremely high-quality surfaces. Therefore, an in-depth study of the surface topography transfer of the steel strip during the rolling process is of considerable significance for improving product quality. In this study, the scale-invariant feature transform (SIFT) algorithm is used to realize the large-field stitching and the correspondence measurement of the surface topography of the roll and strip. The surface topography transfer mechanism and microconvex change law during cold rolling are revealed. Further analysis is conducted regarding the effects of different reduction rates and the initial surface topography of the roll on the formation of strip surface topography. Experimental results reveal that the furrow phenomenon occurs during the rolling process owing to the backward slip effect but is eliminated by the elastoplastic deformation of the matrix and the forward slip action. No furrow occurred along the width direction of the strip. With an increase in the rolling reduction rate, the transfer rate increases, and the strip surface topography is closer to the roll surface topography. Under the same rolling roughness condition and a small reduction rate (5%), the transfer degree increases remarkably with a rise in the reduction rate and increases slowly as the reduction rate continues to grow (from 7 to 10%). This study serves as a theoretical basis for the subsequent improvement of the surface quality of cold rolled strips.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3