Estimation of Surface Roughness on Milled Surface Using Capacitance Sensor Based Micro Gantry System through Single-Shot Approach

Author:

Mathiyazhagan RajendranORCID,SampathKumar SenthamaraiKannan,Karthikeyan PalanisamyORCID

Abstract

The profile generation is highly complex for roughness measurement using a capacitive sensor because of the small peak-to-peak width of the machined surface and the close proximity of the sensor setting with the machining setup which has the chance of damaging the sensor. Considering these shortcomings, a higher sensor sensing diameter with an appropriate resolution has been selected for a single-shot approach. An automated micro gantry XYZ system is integrated with a capacitive sensor to precisely target, move, and measure the roughness. For investigation, a vertical milled surface with a wide roughness range has been prepared. A Stylus profilometer has been used to measure the roughness (Ra) of the specimens for comparison. An experiment has been conducted on the above system with a 5.6 mm capacitance sensor, and an estimation model using regression has been obtained using sensor data to estimate Ra. In conclusion, the single-shot approach with a 5.6 mm sensing diameter sensor, the proposed micro gantry system, and the estimation model performs better in instantaneous noncontact measurement in the range of 0.3 µm to 2.9 µm roughness estimation. The influence of tilt and waviness has also been discussed using FEA analysis.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3