Abstract
Cu-based alloys are one of the most promising substrates to enhance the performance of lead-frame materials. In the present study, the interfacial reactions in the Sn-0.7 wt.% Cu (SC) lead-free solder reacting with Cu-3.3 wt.% Fe (C194), Cu-2.0 wt.% Be (Alloy 25), and Cu-3.3 wt.% Ti (C1990 HP) were investigated. The material underwent a liquid–solid interface reaction, and the reaction time was 0.5 to a few hours at the reaction temperatures of 240 °C, 255 °C, and 270 °C. The morphology, composition, growth rate, and growth mechanism of the intermetallic compounds (IMCs) formed at the interface were investigated in this study. The results showed that the reaction couples of SC/C194, SC/Alloy 25, and SC/C1990 HP formed IMCs, which were the [(Cu, Fe)6Sn5 and (Cu, Fe)3Sn], [(Cu, Be)3Sn and (Cu, Be)6Sn5], and [Cu6Sn5] phases, respectively. Finally, the IMC growth mechanism for the SC/C194, SC/Alloy 25, and SC/C1990 HP couples displayed reaction control, grain boundary diffusion control, and diffusion control, respectively.
Funder
National Science and Technology Council, Taiwan, R.O.C.
Subject
General Materials Science,Metals and Alloys
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献