Multi-UAV Path Planning and Following Based on Multi-Agent Reinforcement Learning

Author:

Zhao Xiaoru1ORCID,Yang Rennong1,Zhong Liangsheng2ORCID,Hou Zhiwei2

Affiliation:

1. Air Traffic Control and Navigation School, Air Force Engineering University, Xi’an 710051, China

2. School of Systems Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China

Abstract

Dedicated to meeting the growing demand for multi-agent collaboration in complex scenarios, this paper introduces a parameter-sharing off-policy multi-agent path planning and the following approach. Current multi-agent path planning predominantly relies on grid-based maps, whereas our proposed approach utilizes laser scan data as input, providing a closer simulation of real-world applications. In this approach, the unmanned aerial vehicle (UAV) uses the soft actor–critic (SAC) algorithm as a planner and trains its policy to converge. This policy enables end-to-end processing of laser scan data, guiding the UAV to avoid obstacles and reach the goal. At the same time, the planner incorporates paths generated by a sampling-based method as following points. The following points are continuously updated as the UAV progresses. Multi-UAV path planning tasks are facilitated, and policy convergence is accelerated through sharing experiences among agents. To address the challenge of UAVs that are initially stationary and overly cautious near the goal, a reward function is designed to encourage UAV movement. Additionally, a multi-UAV simulation environment is established to simulate real-world UAV scenarios to support training and validation of the proposed approach. The simulation results highlight the effectiveness of the presented approach in both the training process and task performance. The presented algorithm achieves an 80% success rate to guarantee that three UAVs reach the goal points.

Publisher

MDPI AG

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3