Energy-Efficient Online Path Planning for Internet of Drones Using Reinforcement Learning

Author:

AlMania Zainab12,Sheltami Tarek1ORCID,Ahmed Gamil1ORCID,Mahmoud Ashraf1,Barnawi Abdulaziz3ORCID

Affiliation:

1. Computer Engineering Department, Interdisciplinary Research Center of Smart Mobility and Logistics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

2. Computing Department, Applied College, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia

3. Computer Engineering Department, Interdisciplinary Research Center for Intelligent Secure Systems, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

Abstract

Unmanned aerial vehicles (UAVs) have recently been applied in several contexts due to their flexibility, mobility, and fast deployment. One of the essential aspects of multi-UAV systems is path planning, which autonomously determines paths for drones from starting points to destination points. However, UAVs face many obstacles in their routes, potentially causing loss or damage. Several heuristic approaches have been investigated to address collision avoidance. These approaches are generally applied in static environments where the environment is known in advance and paths are generated offline, making them unsuitable for unknown or dynamic environments. Additionally, limited flight times due to battery constraints pose another challenge in multi-UAV path planning. Reinforcement learning (RL) emerges as a promising candidate to generate collision-free paths for drones in dynamic environments due to its adaptability and generalization capabilities. In this study, we propose a framework to provide a novel solution for multi-UAV path planning in a 3D dynamic environment. The improved particle swarm optimization with reinforcement learning (IPSO-RL) framework is designed to tackle the multi-UAV path planning problem in a fully distributed and reactive manner. The framework integrates IPSO with deep RL to provide the drone with additional feedback and guidance to operate more sustainably. This integration incorporates a unique reward system that can adapt to various environments. Simulations demonstrate the effectiveness of the IPSO-RL approach, showing superior results in terms of collision avoidance, path length, and energy efficiency compared to other benchmarks. The results also illustrate that the proposed IPSO-RL framework can acquire a feasible and effective route successfully with minimum energy consumption in complicated environments.

Funder

Interdisciplinary center of smart mobility and logistics at King Fahd University of Petroleum and Minerals

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3