Material Flows and Stocks in the Urban Building Sector: A Case Study from Vienna for the Years 1990–2015

Author:

Lederer Jakob,Gassner Andreas,Keringer Florian,Mollay Ursula,Schremmer Christoph,Fellner Johann

Abstract

Population growth in cities leads to high raw material consumption and greenhouse gas emissions. In temperate climates were heating of buildings is among the major contributors to greenhouse gases, thermal insulation of buildings became a standard in recent years. Both population growth and greenhouse gas mitigation may thus have some influence on the quantity and composition of building material stock in cities. By using the case study of Vienna, this influence is evaluated by calculating the stock of major building materials (concrete, bricks, mortar, and plaster, steel, wood, glass, mineral wool, and polystyrene) between the years 1990 and 2015. The results show a growth of the material stock from 274 kt in the year 1990 to 345 kt in the year 2015, resulting in a total increase of 26%. During the same period, the population grew by 22%. On a material level, the increase of thermal insulation materials like polystyrene and mineral wool by factors of 6.5 and 2.5 respectively were much higher than for other materials, indicating energy efficiency and greenhouse gas mitigation in the building construction sector. The displacement of brickwork by concrete as the most important construction material, however, is rather a response to population growth as concrete buildings can be raised faster. A question for the future is to which extent this change from brickwork to high carbon-intensive concrete countervails the achievements in greenhouse gas reduction by thermal insulation.

Funder

Vienna Science and Technology Fund

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3