Applying material and energy flow analysis to assess urban metabolism in the context of the circular economy

Author:

Papageorgiou Asterios1ORCID,Björklund Anna1ORCID,Sinha Rajib1ORCID

Affiliation:

1. Department of Sustainable Development, Environmental Science and Engineering (SEED) KTH Royal Institute of Technology Stockholm Sweden

Abstract

AbstractWith the circular economy (CE) gaining more traction worldwide, local authorities are engaging in efforts to develop circular strategies at the urban level. Developing and monitoring such strategies require detailed quantitative information on material and energy flows, which can be obtained through an urban metabolism (UM) analysis. This study demonstrates a bottom‐up approach to analyze UM at the sectoral level based on material and energy flow analysis (MEFA), aiming to examine its utility within the context of the CE. The analysis is performed for Umeå urban area (Sweden) with a 5‐year timeframe (2017–2021). The application of MEFA provides a detailed quantitative description of material and energy flows per sector, indicating the critical sectors in terms of resource consumption and waste generation and the most significant flows. More specifically, it reveals that the construction sector and households are key sectors within Umeå’s UM and that construction materials, food products, fossil fuels, and drinking water are significant metabolic flows. Furthermore, the application of MEFA with a multi‐year timeframe uncovers trends in consumption rates of materials and generation rates of waste and emissions, revealing, for example, the correlation of material consumption and waste generation with the level of construction activity. Overall, by illustrating the potential of MEFA to provide a detailed quantitative analysis of material and energy flows, this study emphasizes its utility in supporting the design and monitoring of circular strategies at the urban level. At the same time, it highlights limitations of the method and suggests areas for future research.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3