A Novel Probabilistic Power Flow Algorithm Based on Principal Component Analysis and High-Dimensional Model Representation Techniques

Author:

Li Hang,Zhang Zhe,Yin Xianggen

Abstract

Because the penetration level of renewable energy sources has increased rapidly in recent years, uncertainty in power system operation is gradually increasing. As an efficient tool for power system analysis under uncertainty, probabilistic power flow (PPF) is becoming increasingly important. The point-estimate method (PEM) is a well-known PPF algorithm. However, two significant defects limit the practical use of this method. One is that the PEM struggles to estimate high-order moments accurately; this defect makes it difficult for the PEM to describe the distribution of non-Gaussian output random variables (ORVs). The other is that the calculation burden is strongly related to the scale of input random variables (IRVs), which makes the PEM difficult to use in large-scale power systems. A novel approach based on principal component analysis (PCA) and high-dimensional model representation (HDMR) is proposed here to overcome the defects of the traditional PEM. PCA is applied to decrease the dimension scale of IRVs and eliminate correlations. HDMR is applied to estimate the moments of ORVs. Because HDMR considers the cooperative effects of IRVs, it has a significantly smaller estimation error for high-order moments in particular. Case studies show that the proposed method can achieve a better performance in terms of accuracy and efficiency than traditional PEM.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3