Author:
Wang Tonghe,Liang Hong,Cao Junwei,Zhao Yuming
Abstract
The increasing scale of the injection of renewable energy has brought about great uncertainty to the operation of power grid. In this situation, probabilistic power flow (PPF) calculation has been introduced to mitigate the low accuracy of traditional deterministic power flow calculation in describing the operation status and power flow distribution of power systems. Polynomial chaotic expansion (PCE) method has become popular in PPF analysis due to its high efficiency and accuracy, and sparse PCE has increased its capability of tackling the issue of dimension disaster. In this paper, we propose a principal component analysis-based compressive sensing (PCA-CS) algorithm solve the PPF problem. The l1-optimization of CS is used to tackle the dimension disaster of sparse PCE, and PCA is included to further increase the sparsity of expansion coefficient matrix. Theoretical and numerical simulation results show that the proposed method can effectively improve the efficiency of PPF calculation in the case of random inputs with higher dimensions.
Funder
National Key Research and Development Program of China
Subject
Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献