STV-SC: Segmentation and Temporal Verification Enhanced Scan Context for Place Recognition in Unstructured Environment

Author:

Tian XiaojieORCID,Yi PengORCID,Zhang FuORCID,Lei Jinlong,Hong Yiguang

Abstract

Place recognition is an essential part of simultaneous localization and mapping (SLAM). LiDAR-based place recognition relies almost exclusively on geometric information. However, geometric information may become unreliable when faced with environments dominated by unstructured objects. In this paper, we explore the role of segmentation for extracting key structured information. We propose STV-SC, a novel segmentation and temporal verification enhanced place recognition method for unstructured environments. It contains a range image-based 3D point segmentation algorithm and a three-stage process to detect a loop. The three-stage method consists of a two-stage candidate loop search process and a one-stage segmentation and temporal verification (STV) process. Our STV process utilizes the time-continuous feature of SLAM to determine whether there is an occasional mismatch. We quantitatively demonstrate that the STV process can trigger false detections caused by unstructured objects and effectively extract structured objects to avoid outliers. Comparison with state-of-art algorithms on public datasets shows that STV-SC can run online and achieve improved performance in unstructured environments (Under the same precision, the recall rate is 1.4∼16% higher than Scan context). Therefore, our algorithm can effectively avoid the mismatching caused by the original algorithm in unstructured environment and improve the environmental adaptability of mobile agents.

Funder

Shanghai Sailing Program

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3