Numerical Study on the Laser Annealing of Silicon Used in Advanced V-NAND Device

Author:

Son Yeong-Il,Shin JoonghanORCID

Abstract

Laser melt annealing of amorphous silicon (a-Si) and subsequent recrystallization of a-Si are essential processes for successfully implementing vertical NAND (V-NAND) flash memory devices developed based on the cell-over-periphery (COP) structure. The aim of this study was to develop the numerical model for the laser melting process of a-Si used in V-NAND COP structure. In this study, the numerical simulation predicting the temperature distribution induced by multipath laser scanning and beam overlapping was conducted. In particular, the temperature uniformity and melt duration issues, which are critical in practical laser melt annealing applications in semiconductor fabrication, were discussed based on the simulated temperature distribution results. According to the simulation results, it was found that the annealed surface was subjected to rapid heating and cooling. The heating and cooling rates after temperature stabilization were 4.7 × 107 K/s and 2.04 × 107 K/s, respectively. The surface temperature increased with time and beam overlap ratio owing to the preheating effect and increasing heat accumulation per unit area. Under the process conditions used in the simulation, the temperature in a-Si was far above its melting point (1440 K), which numerically indicated full melting of the a-Si layer. Temperature uniformity within the annealed area was significantly improved when an overlap ratio of 50% was used. It was also found that using an overlap ratio of 50% increased the melt duration by 29.8% compared with an overlap ratio of 25%.

Funder

Ministry of Trade, Industry and Energy

National Research Foundation of Korea

Ministry of Education

Publisher

MDPI AG

Subject

General Materials Science

Reference38 articles.

1. New ultra high density EPROM and flash EEPROM with NAND structure cell

2. Vertical cell array using TCAT (Terabit Cell Array Transistor) technology for ultra high density NAND flash memory;Jang;Proceedings of the 2009 Symposium on VLSI Technology,2009

3. Pipe-shaped BiCS flash memory with 16 stacked layers and multi-level-cell operation for ultra high density storage devices;Katsumata;Proceedings of the 2009 Symposium on VLSI Technology,2009

4. Single-crystalline Si STacked ARray (STAR) NAND flash memory;Yun;IEEE Trans. Electron. Devices,2011

5. A floating gate based 3D NAND technology with CMOS under array

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3