Activation Enhancement and Grain Size Improvement for Poly-Si Channel Vertical Transistor by Laser Thermal Annealing in 3D NAND Flash

Author:

Yang TaoORCID,Xia Zhiliang,Fan Dongyu,Zhao Dongxue,Xie Wei,Yang Yuancheng,Liu Lei,Zhou Wenxi,Huo Zongliang

Abstract

The bit density is generally increased by stacking more layers in 3D NAND Flash. Lowering dopant activation of select transistors results from complex integrated processes. To improve channel dopant activation, the test structure of vertical channel transistors was used to investigate the influence of laser thermal annealing on dopant activation. The activation of channel doping by different thermal annealing methods was compared. The laser thermal annealing enhanced the channel activation rate by at least 23% more than limited temperature rapid thermal annealing. We then comprehensively explore the laser thermal annealing energy density on the influence of Poly-Si grain size and device performance. A clear correlation between grain size mean and grain size sigma, large grain size mean and sigma with large laser thermal annealing energy density. Large laser thermal annealing energy density leads to tightening threshold voltage and subthreshold swing distribution since Poly-Si grain size regrows for better grain size distribution with local grains optimization. As an enabler for next-generation technologies, laser thermal annealing will be highly applied in 3D NAND Flash for better device performance with stacking more layers, and opening new opportunities of novel 3D architectures in the semiconductor industry.

Funder

National Key Research and Development Program of China

National Science and Technology Major Project of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference22 articles.

1. Yamashita, R., Magia, S., Higuchi, T., Yoneya, K., Yamamura, T., Mizukoshi, H., Zaitsu, S., Yamashita, M., Toyama, S., and Kamae, N. (2017, January 5–9). A 51 2Gb 3 b/cell flash memory on 64-word-line-layer BiCS technology. Proceedings of the 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA.

2. Kim, C., Cho, J.H., Jeong, W., Park, I.H., Park, H.W., Kim, D.H., Kang, D., Lee, S., Lee, J.S., and Kim, W. (2017, January 5–9). A 512 Gb 3 b/cell 64-stacked WL 3D V-NAND flash memory. Proceedings of the 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA.

3. Lee, S., Kim, C., Kim, M., Joe, S.M., Jang, J., Kim, S., Lee, K., Kim, J., Park, J., and Lee, H.J. (2018, January 11–15). A 1 Tb 4 b/cell 64-stacked-WL 3D NAND flash memory with 12 MB/s program throughput. Proceedings of the 2018 IEEE International Solid—State Circuits Conference—(ISSCC), San Francisco, CA, USA.

4. Maejima, H., Kanda, K., Fujimura, S., Takagiwa, T., Ozawa, S., Sato, J., Shindo, Y., Sato, M., Kanagawa, N., and Musha, J. (2018, January 11–15). A 512 Gb 3 b/Cell 3D flash memory on a 96-word-line-layer technology. Proceedings of the 2018 IEEE International Solid—State Circuits Conference (ISSCC), San Francisco, CA, USA.

5. Siau, C., Kim, K.H., Lee, S., Isobe, K., Shibata, N., Verma, K., Ariki, T., Li, J., Yuh, J., and Amarnath, A. (2019, January 17–21). A 512 Gb 3-bit/Cell 3D Flash Memory on 128-Wordline-Layer with 132 MB/s Write Performance Featuring Circuit-Under-Array Technology. Proceedings of the 2019 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3