Abstract
Integrated motor-transmission (IMT) powertrain systems are widely used in future electric vehicles due to the advantages of their simple structure configuration and high controllability. In electric vehicles, precise speed tracking control is critical to ensure good gear shifting quality of an IMT powertrain system. However, the speed tracking control design becomes challenging due to the inevitable time delay of signal transmission introduced by the in-vehicle network and unknown road slope variation. Moreover, the system parameter uncertainties and signal measurement noise also increase the difficulty for the control algorithm. To address these issues, in this paper a robust speed tracking control strategy for electric vehicles with an IMT powertrain system is proposed. A disturbance observer and low-pass filter are developed to decrease the side effect from the unknown road slope variation and measurement noise and reduce the estimation error of the external load torque. Then, the network-induced delay speed tracking model is developed and is upgraded considering the damping coefficient uncertainties of the IMT powertrain system, which can be described through the norm-bounded uncertainty reduction method. To handle the network-induced delay and parameter uncertainties, a novel and less-conservative Lyapunov function is proposed to design the robust speed tracking controller by the linear matrix inequality (LMI) algorithm. Meanwhile, the estimation error and measurement noise are considered as the external disturbances in the controller design to promote robustness. Finally, the results demonstrate that the proposed controller has the advantages of strong robustness, excellent speed tracking performance, and ride comfort over the current existing controllers.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hunan Province
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献