Design of an observer-based anti-disturbance speed tracking controller for integrated motor-transmission systems under uncertain parameters and road slope variation

Author:

Lai Weilong1ORCID,Pan Juntao2

Affiliation:

1. School of Electronic and Communication Engineering, Quanzhou University of Information Engineering, Quanzhou, People’s Republic of China

2. School of Electrical and Information Engineering, North Minzu University, Yinchuan, People’s Republic of China

Abstract

The performance of speed tracking is crucial for electric vehicles. In this paper, the observer-based speed tracking controller is designed to improve the stability, reliability, and economy of the IMT system by obtaining unmeasurable state information using the observer. The nonlinearity of the IMT system, the uncertainty of the electric damping coefficient, and the drive shaft damping coefficient are taken into account. First, the norm-bounded uncertainty reduction method describes the system uncertainty parameters and establishes the state space in expression. Second, the system is reconstructed to deal with the nonlinear and unmeasurable states. Third, Lyapunov stability theory and linear matrix inequality (LMI) are used to design the optimal controller that has [Formula: see text] and LQR performance conditions to minimize the effects of sensor noise and road slope and to ensure system stability and control performance. Among them, the nonlinear mismatch term in the system is dealt with using the differential mean value theorem (DMVT). Finally, compared with other controllers, the designed controller has good tracking performance, anti-disturbance, and robustness, and the observer can estimate the state effectively.

Funder

Juntao Pan

Advanced Intelligent Perception and Control Technology Innovative Team of Ningxia

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3