Dynamic Sensorless Control Approach for Markovian Switching Systems Applied to PWM DC–DC Converters with Time-Delay and Partial Input Saturation

Author:

Zahaf Abdelmalek1,Bououden Sofiane2ORCID,Chadli Mohammed3,Boulkaibet Ilyes4,Neji Bilel4ORCID,Khezami Nadhira4ORCID

Affiliation:

1. Faculty of Technology Sciences, Constantine 1—Frères Mentouri University, Constantine 25017, Algeria

2. Laboratory of SATIT, Department of Industrial Engineering, Abbes Laghrour University, Khenchela 40004, Algeria

3. Université Paris-Saclay, Univ Evry, IBISC, 91020 Evry, France

4. College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait

Abstract

This paper provides a detailed analysis of the output voltage/current tracking control of a PWM DCDC converter that has been modeled as a Markov jump system. In order to achieve that, a dynamic sensorless strategy is proposed to perform active disturbance rejection control. As a convex optimization problem, a novel reformulation of the problem is provided to compute optimal control. Accordingly, necessary less conservative conditions are established via Linear Matrix Inequalities. First, a sensorless active disturbance rejection design is proposed. Then, to carry out the control process, a robust dynamic observer–predictive controller approach is introduced. Meanwhile, the PWM DC-DC switching power converters are examined as discrete-time Markovian switching systems. Considering that the system is subject to modeling uncertainties, time delays, and load variations as external disturbances, and by taking partial input saturation into account, the Lyapunov–Krasovskii function is used to construct the required feasibility frame and less conservative stability conditions. As a result, the proposed design provides an efficient control strategy with disturbance rejection and time-delay compensation capabilities and maintains robust performance with respect to constraints. Finally, a PWM DC-DC power converter simulation study is performed in different scenarios, and the obtained results are illustrated in detail to demonstrate the effectiveness of the proposed approach.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3