Dual-Branch Remote Sensing Spatiotemporal Fusion Network Based on Selection Kernel Mechanism

Author:

Li WeishengORCID,Wu Fengyan,Cao Dongwen

Abstract

Popular deep-learning-based spatiotemporal fusion methods for creating high-temporal–high-spatial-resolution images have certain limitations. The reconstructed images suffer from insufficient retention of high-frequency information and the model suffers from poor robustness, owing to the lack of training datasets. We propose a dual-branch remote sensing spatiotemporal fusion network based on a selection kernel mechanism. The network model comprises a super-resolution network module, a high-frequency feature extraction module, and a difference reconstruction module. Convolution kernel adaptive mechanisms are added to the high-frequency feature extraction module and difference reconstruction module to improve robustness. The super-resolution module upgrades the coarse image to a transition image matching the fine image; the high-frequency feature extraction module extracts the high-frequency features of the fine image to supplement the high-frequency features for the difference reconstruction module; the difference reconstruction module uses the structural similarity for fine-difference image reconstruction. The fusion result is obtained by combining the reconstructed fine-difference image with the known fine image. The compound loss function is used to help network training. Experiments are carried out on three datasets and five representative spatiotemporal fusion algorithms are used for comparison. Subjective and objective evaluations validate the superiority of our proposed method.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Natural Science Foundation of Chongqing

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3