Tree Species Classification over Cloudy Mountainous Regions by Spatiotemporal Fusion and Ensemble Classifier

Author:

Cui Liang,Chen Shengbo,Mu Yongling,Xu Xitong,Zhang Bin,Zhao Xiuying

Abstract

Accurate mapping of tree species is critical for the sustainable development of the forestry industry. However, the lack of cloud-free optical images makes it challenging to map tree species accurately in cloudy mountainous regions. In order to improve tree species identification in this context, a classification method using spatiotemporal fusion and ensemble classifier is proposed. The applicability of three spatiotemporal fusion methods, i.e., the spatial and temporal adaptive reflectance fusion model (STARFM), the flexible spatiotemporal data fusion (FSDAF), and the spatial and temporal nonlocal filter-based fusion model (STNLFFM), in fusing MODIS and Landsat 8 images was investigated. The fusion results in Helong City show that the STNLFFM algorithm generated the best fused images. The correlation coefficients between the fusion images and actual Landsat images on May 28 and October 19 were 0.9746 and 0.9226, respectively, with an average of 0.9486. Dense Landsat-like time series at 8-day time intervals were generated using this method. This time series imagery and topography-derived features were used as predictor variables. Four machine learning methods, i.e., K-nearest neighbors (KNN), random forest (RF), artificial neural networks (ANNs), and light gradient boosting machine (LightGBM), were selected for tree species classification in Helong City, Jilin Province. An ensemble classifier combining these classifiers was constructed to further improve the accuracy. The ensemble classifier consistently achieved the highest accuracy in almost all classification scenarios, with a maximum overall accuracy improvement of approximately 3.4% compared to the best base classifier. Compared to only using a single temporal image, utilizing dense time series and the ensemble classifier can improve the classification accuracy by about 20%, and the overall accuracy reaches 84.32%. In conclusion, using spatiotemporal fusion and the ensemble classifier can significantly enhance tree species identification in cloudy mountainous areas with poor data availability.

Funder

National Key Research and Development Program of China

capital construction funds (innovative capacity building) within the provincial budget in 2021

Publisher

MDPI AG

Subject

Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3