An Experimental Study of the Accuracy and Change Detection Potential of Blending Time Series Remote Sensing Images with Spatiotemporal Fusion

Author:

Wei Jingbo12ORCID,Chen Lei1,Chen Zhou2ORCID,Huang Yukun3

Affiliation:

1. School of Mathematics and Computer Sciences, Nanchang University, Nanchang 330031, China

2. Institute of Space Science and Technology, Nanchang University, Nanchang 330031, China

3. School of Information Management, Jiangxi University of Finance and Economics, Nanchang 330013, China

Abstract

Over one hundred spatiotemporal fusion algorithms have been proposed, but convolutional neural networks trained with large amounts of data for spatiotemporal fusion have not shown significant advantages. In addition, no attention has been paid to whether fused images can be used for change detection. These two issues are addressed in this work. A new dataset consisting of nine pairs of images is designed to benchmark the accuracy of neural networks using one-pair spatiotemporal fusion with neural-network-based models. Notably, the size of each image is significantly larger compared to other datasets used to train neural networks. A comprehensive comparison of the radiometric, spectral, and structural losses is made using fourteen fusion algorithms and five datasets to illustrate the differences in the performance of spatiotemporal fusion algorithms with regard to various sensors and image sizes. A change detection experiment is conducted to test if it is feasible to detect changes in specific land covers using the fusion results. The experiment shows that convolutional neural networks can be used for one-pair spatiotemporal fusion if the sizes of individual images are adequately large. It also confirms that the spatiotemporally fused images can be used for change detection in certain scenes.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Diffusion models for spatio-temporal-spectral fusion of homogeneous Gaofen-1 satellite platforms;International Journal of Applied Earth Observation and Geoinformation;2024-04

2. A Deep Learning-Based Spatio-Temporal NDVI Data Fusion Model;Journal of Resources and Ecology;2024-01-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3