Real-Time Weed Control Application Using a Jetson Nano Edge Device and a Spray Mechanism

Author:

Assunção EduardoORCID,Gaspar Pedro D.ORCID,Mesquita RicardoORCID,Simões Maria P.ORCID,Alibabaei KhadijehORCID,Veiros AndréORCID,Proença HugoORCID

Abstract

Portable devices play an essential role where edge computing is necessary and mobility is required (e.g., robots in agriculture within remote-sensing applications). With the increasing applications of deep neural networks (DNNs) and accelerators for edge devices, several methods and applications have been proposed for simultaneous crop and weed detection. Although preliminary studies have investigated the performance of inference time for semantic segmentation of crops and weeds in edge devices, performance degradation has not been evaluated in detail when the required optimization is applied to the model for operation in such edge devices. This paper investigates the relationship between model tuning hyperparameters to improve inference time and its effect on segmentation performance. The study was conducted using semantic segmentation model DeeplabV3 with a MobileNet backbone. Different datasets (Cityscapes, PASCAL and ADE20K) were analyzed for a transfer learning strategy. The results show that, when using a model hyperparameter depth multiplier (DM) of 0.5 and the TensorRT framework, segmentation performance mean intersection over union (mIOU) decreased by 14.7% compared to that of a DM of 1.0 and no TensorRT. However, inference time accelerated dramatically by a factor of 14.8. At an image resolution of 1296×966, segmentation performance of 64% mIOU and inference of 5.9 frames per second (FPS) was achieved in Jetson Nano’s device. With an input image resolution of 513×513, and hyperparameters output stride OS = 32 and DM = 0.5, an inference time of 0.04 s was achieved resulting in 25 FPS. The results presented in this paper provide a deeper insight into how the performance of the semantic segmentation model of crops and weeds degrades when optimization is applied to adapt the model to run on edge devices. Lastly, an application is described for the semantic segmentation of weeds embedded in the edge device (Jetson Nano) and integrated with the robotic orchard. The results show good spraying accuracy and feasibility of the method.

Funder

PDR2020

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference44 articles.

1. +Pêssego – Resultados de Apoio à Gestão;Simões,2017

2. Modeling evapotranspiration using Encoder-Decoder Model;Alibabaei;Proceedings of the 2020 International Conference on Decision Aid Sciences and Application (DASA),2020

3. Decision-making support system for fruit diseases classification using Deep Learning;Assunção;Proceedings of the 2020 International Conference on Decision Aid Sciences and Application (DASA),2020

4. Automated weed detection systems: A review;Shanmugam;KnE Eng.,2020

5. Prediction of the Vigor and Health of Peach Tree Orchard;Cunha;Proceedings of the International Conference on Computational Science and Its Applications,2021

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3