An improved semantic segmentation algorithm for high-resolution remote sensing images based on DeepLabv3+

Author:

Wang Yan,Yang Ling,Liu Xinzhan,Yan Pengfei

Abstract

AbstractHigh-precision and high-efficiency Semantic segmentation of high-resolution remote sensing images is a challenge. Existing models typically require a significant amount of training data to achieve good classification results and have numerous training parameters. A novel model called MST-DeepLabv3+ was suggested in this paper for remote sensing image classification. It’s based on the DeepLabv3+ and can produce better results with fewer train parameters. MST-DeepLabv3+ made three improvements: (1) Reducing the number of model parameters by substituting MobileNetV2 for the Xception in the DeepLabv3+’s backbone network. (2) Adding the attention mechanism module SENet to increase the precision of semantic segmentation. (3) Increasing Transfer Learning to enhance the model's capacity to recognize features, and raise the segmentation accuracy. MST-DeepLabv3+ was tested on international society for photogrammetry and remote sensing (ISPRS) dataset, Gaofen image dataset (GID), and practically applied to the Taikang cultivated land dataset. On the ISPRS dataset, the mean intersection over union (MIoU), overall accuracy (OA), Precision, Recall, and F1-score are 82.47%, 92.13%, 90.34%, 90.12%, and 90.23%, respectively. On the GID dataset, these values are 73.44%, 85.58%, 84.10%, 84.86%, and 84.48%, respectively. The results were as high as 90.77%, 95.47%, 95.28%, 95.02%, and 95.15% on the Taikang cultivated land dataset. The experimental results indicate that MST-DeepLabv3+ effectively improves the accuracy of semantic segmentation of remote sensing images, recognizes the edge information with more completeness, and significantly reduces the parameter size.

Funder

Henan Provincial Science and Technology Research Project

the National Major Project of High-Resolution Earth Ob-servation System

the National Science and Technology Platform Construction Project

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3