Combining Object-Oriented and Deep Learning Methods to Estimate Photosynthetic and Non-Photosynthetic Vegetation Cover in the Desert from Unmanned Aerial Vehicle Images with Consideration of Shadows

Author:

He JieORCID,Lyu DuORCID,He Liang,Zhang Yujie,Xu Xiaoming,Yi Haijie,Tian QilongORCID,Liu Baoyuan,Zhang XiaopingORCID

Abstract

Soil erosion is a global environmental problem. The rapid monitoring of the coverage changes in and spatial patterns of photosynthetic vegetation (PV) and non-photosynthetic vegetation (NPV) at regional scales can help improve the accuracy of soil erosion evaluations. Three deep learning semantic segmentation models, DeepLabV3+, PSPNet, and U-Net, are often used to extract features from unmanned aerial vehicle (UAV) images; however, their extraction processes are highly dependent on the assignment of massive data labels, which greatly limits their applicability. At the same time, numerous shadows are present in UAV images. It is not clear whether the shaded features can be further classified, nor how much accuracy can be achieved. This study took the Mu Us Desert in northern China as an example with which to explore the feasibility and efficiency of shadow-sensitive PV/NPV classification using the three models. Using the object-oriented classification technique alongside manual correction, 728 labels were produced for deep learning PV/NVP semantic segmentation. ResNet 50 was selected as the backbone network with which to train the sample data. Three models were used in the study; the overall accuracy (OA), the kappa coefficient, and the orthogonal statistic were applied to evaluate their accuracy and efficiency. The results showed that, for six characteristics, the three models achieved OAs of 88.3–91.9% and kappa coefficients of 0.81–0.87. The DeepLabV3+ model was superior, and its accuracy for PV and bare soil (BS) under light conditions exceeded 95%; for the three categories of PV/NPV/BS, it achieved an OA of 94.3% and a kappa coefficient of 0.90, performing slightly better (by ~2.6% (OA) and ~0.05 (kappa coefficient)) than the other two models. The DeepLabV3+ model and corresponding labels were tested in other sites for the same types of features: it achieved OAs of 93.9–95.9% and kappa coefficients of 0.88–0.92. Compared with traditional machine learning methods, such as random forest, the proposed method not only offers a marked improvement in classification accuracy but also realizes the semiautomatic extraction of PV/NPV areas. The results will be useful for land-use planning and land resource management in the areas.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3