Remaining Useful Life Prediction of MOSFETs via the Takagi–Sugeno Framework

Author:

Witczak MarcinORCID,Mrugalski MarcinORCID,Lipiec BogdanORCID

Abstract

The paper presents a new method of predicting the remaining useful life of technical devices. The proposed soft computing approach bridges the gap between analytical and data-driven health prognostic approaches. Whilst the former ones are based on the classical exponential shape of degradation, the latter ones learn the degradation behavior from the observed historical data. As a result of the proposed fusion, a practical method for calculating components’ remaining useful life is proposed. Contrarily to the approaches presented in the literature, the proposed ensemble of analytical and data-driven approaches forms the uncertainty interval containing an expected remaining useful life. In particular, a Takagi–Sugeno multiple models-based framework is used as a data-driven approach while an exponential curve fitting on-line approach serves as an analytical one. Unlike conventional data-driven methods, the proposed approach is designed on the basis of the historical data that apart from learning is also applied to support the diagnostic decisions. Finally, the entire scheme is used to predict power Metal Oxide Field Effect Transistors’ (MOSFETs) health status. The status of the currently operating MOSFET is determined taking into consideration the knowledge obtained from the preceding MOSFETs, which went through the run-to-failure process. Finally, the proposed approach is validated with the application of real data obtained from the NASA Ames Prognostics Data Repository.

Funder

National Science Centre of Poland

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advanced RUL Estimation for Lithium-Ion Batteries: Integrating Attention-Based LSTM with Mutual Learning-enhanced Artificial Bee Colony Optimization;Journal of The Institution of Engineers (India): Series B;2024-08-04

2. Online Condition Monitoring for GaN Power Devices With Integrated Dynamic On-Resistance Full Profile Scan and Offset Calibration;IEEE Transactions on Power Electronics;2024-05

3. Degradation Trajectory Tracking of MOSFETs Based on Machine Learning and CEEMDAN;2023 5th International Conference on Intelligent Control, Measurement and Signal Processing (ICMSP);2023-05-19

4. Identification and health-aware economic control of production systems: A fuzzy logic max plus algebraic approach;Engineering Applications of Artificial Intelligence;2023-04

5. An AI Architecture for Power MOS Rds-on-Driven Lifetime Estimation;2023 Smart Systems Integration Conference and Exhibition (SSI);2023-03-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3