Abstract
The bubble bursting process existing in the particle flow is a complex gas-liquid-solid three-phase coupling dynamic problem. The bubble bursting mechanism, including dynamic characteristics and wall effects, is not clear. To address the above matters, we present a modeling method for the piecewise linear interface calculation-volume of fluid (PLIC-VOF) based bubble burst. The bubble bursting process near or on the wall is analyzed to reveal the dynamic characteristics of bubble bursting and obtain the effect of a bubble bursting on the surrounding flow field. Then a particle image velocimetry (PIV) based self-developed experimental observation platform is established, and the effectiveness of the proposed method is verified. Research results indicate that, in the high-speed turbulent environment, a large pressure difference existed in the bubble tail, which induces the bubble burst to occur; the distance between the wall and the bubble decreases; the higher the flow velocity is, the less time is acquired for bubble bursting, but when the flow velocity exceeds the critical velocity 50 m/s, more time is needed; the coalescence-burst process of double bubbles increases the bubble bursting time, which causes the acceleration of particle motion to reduce.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献