Author:
Ramírez-Argáez Marco,Dutta Abhishek,Amaro-Villeda A.,González-Rivera C.,Conejo A.
Abstract
Mixing phenomena in metallurgical steel ladles by bottom gas injection involves three phases namely, liquid molten steel, liquid slag and gaseous argon. In order to numerically solve this three-phase fluid flow system, a new approach is proposed which considers the physical nature of the gas being a dispersed phase in the liquid, while the two liquids namely, molten steel and slag are continuous phases initially separated by a sharp interface. The model was developed with the combination of two algorithms namely, IPSA (inter phase slip algorithm) where the gas bubbles are given a Eulerian approach since are considered as an interpenetrating phase in the two liquids and VOF (volume of fluid) in which the liquid is divided into two separate liquids but depending on the physical properties of each liquid they are assigned a mass fraction of each liquid. This implies that both the liquid phases (steel and slag) and the gas phase (argon) were solved for the mass balance. The Navier–Stokes conservation equations and the gas-phase turbulence in the liquid phases were solved in combination with the standard k-ε turbulence model. The mathematical model was successfully validated against flow patterns obtained experimentally using particle image velocimetry (PIV) and by the calculation of the area of the slag eye formed in a 1/17th water–oil physical model. The model was applied to an industrial ladle to describe in detail the turbulent flow structure of the multiphase system.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献