BPG-Based Automatic Lossy Compression of Noisy Images with the Prediction of an Optimal Operation Existence and Its Parameters

Author:

Kovalenko BogdanORCID,Lukin VladimirORCID,Kryvenko SergiiORCID,Naumenko Victoriya,Vozel BenoitORCID

Abstract

With a resolution improvement, the size of modern remote sensing images increases. This makes it desirable to compress them, mostly by using lossy compression techniques. Often the images to be compressed (or some component images of multichannel remote sensing data) are noisy. The lossy compression of such images has several peculiarities dealing with specific noise filtering effects and evaluation of the compression technique’s performance. In particular, an optimal operation point (OOP) may exist where quality of a compressed image is closer to the corresponding noise-free (true) image than the uncompressed (original, noisy) image quality, according to certain criterion (metrics). In such a case, it is reasonable to automatically compress an image under interest in the OOP neighborhood, but without having the true image at disposal in practice, it is impossible to accurately determine if the OOP does exist. Here we show that, by a simple and fast preliminary analysis and pre-training, it is possible to predict the OOPs existence and the metric values in it with appropriate accuracy. The study is carried out for a better portable graphics (BPG) coder for additive white Gaussian noise, focusing mainly on one-component (grayscale) images. The results allow for concluding that prediction is possible for an improvement (reduction) in the quality metrics of PSNR and PSNR-HVS-M. In turn, this allows for decision-making about the existence or absence of an OOP. If an OOP is absent, a more “careful” compression is recommended. Having such rules, it then becomes possible to carry out the compression automatically. Additionally, possible modifications for the cases of signal-dependent noise and the joint compression of three-component images are considered and the possible existence of an OOP for these cases is demonstrated.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference53 articles.

1. Potential Applications of the Sentinel-2 Multispectral Sensor and the Enmap Hyperspectral Sensor in Mineral Exploration;Mielke;EARSeL Eproceedings,2014

2. Remote Sensing, Models, and Methods for Image Processing;Schowengerdt,2007

3. A workflow for Sustainable Development Goals indicators assessment based on high-resolution satellite data

4. A Review of the Application of Optical and Radar Remote Sensing Data Fusion to Land Use Mapping and Monitoring

5. Future Trends in Remote Sensing;Khorram,2016

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3